
ISSN 2348 – 9928
IJAICT Volume -1, Issue-5, September 2014 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 92

ENHANCED DECODING ALGORITHM FOR ERROR DETECTION
AND CORRECTION IN SRAM

Ms. E.Hemha Chandra
PG Scholar,

PPG Institute of Technology,
Coimbatore, Tamilnadu, India.

Mr. S.Baskar
Assistant Professor,

Angel College of Engineering and Technology,
Coimbatore, Tamilnadu, India.

Abstract— As expertise scales, Multiple Cell Upsets (MCUs)
become more common and affect a larger number of cells. In order
to guard memories alongside of MCUs as well as SEUs is to make
use of sophisticated Error detecting and correcting codes that can
accurate more than one error per word. A sub-group of the low-
density parity checks (LDPC) codes, which be-longs to the family of
the Majority logic decoding has been newly projected for memory
application and Difference set codes are one example of these codes
which contributes for error detection and correction.ML decodable
Codes are appropriate for memory applications due to their ability
to correct a large number of errors. In this paper, the anticipated
scheme for fault-detection and correction method significantly
makes area overhead minimal and to reduce the decoding time
through DC codes than the existing technique and it shows
potential option for memory applications. HDL accomplishment
and synthesis consequences are included, showing that the
proposed techniques can be proficiently implemented.

Keywords— Difference Set Codes, Error Correction Codes,
Majority Logic Decoding, Memory, Multiple Cells Upsets (Mcus).

I. INTRODUCTION

In recent centaury, the need for efficient and reliable data
transmission and storage system has been significantly
highlighted. RADIATION-INDUCED soft errors are one of
the major issues for Memory reliability. To prevent soft errors
from causing data corruption, memories are typically
protected with error correction codes (ECCs). The most
commonly used codes can correct one error and detect two
errors per memory word are known as single-error- correction
double-error- detection (SEC-DED) codes. Their main
advantages are that they require few additional bits per word
and that the decoding process is simple.

A SEC-DED code enforces a minimum distance of four
between any two coded words by having a distance of four
any word that suffers a double error would be in the worst
case at a distance of two from any valid coded word.
Therefore, it cannot be mistaken for a single error and
miscorrected. The same approach is used for codes that can

correct two errors; in this case, Double Error Correction Triple
Error-Detection (DEC-TED) codes are used. However, this
increases the decoder complexity substantially. Further, in a
hierarchical approach that combines a Hamming code and a
Bose–Chaudhuri–Hocquenghem code was proposed to
minimize the Latency. The use of Euclidean geometry (EG)
codes has also been considered for memory protection, The
particular EG codes studied are one-step Maximum likelihood
decodable and therefore, these decoders can be implemented
with low cost. Other codes that are one-step Maximum
likelihood decodable are difference-set (DS) codes. Their use
for memory protection has also been studied recently showing
that the properties of the codes can be exploited to reduce the
decoding time significantly.

The combination of a simple decoder and reduced decoding
time makes DS codes an attractive option for memory
protection. Among the ECC codes that meet the requirements
of higher error correction capability and low decoding
complexity, cyclic block codes have been identified as good
candidates, due to their property of being Maximum likelihood
(ML) decodable. A sub-group of the low-density parity check
(LDPC) codes, which be-longs to the family of the ML
decodable codes, has been re-searched in. In this paper, we
will focus on one specific type of LDPC codes, namely the
difference-set cyclic codes (DSCCs), which are widely used in
the Japanese teletext system or FM multiplex broadcasting
system. In contrast with these works, several research groups
have aimed to improve the performance of decoding algorithm
for memory applications.

 In this work one modification of the current algorithm and a
new low complexity high performance algorithm is proposed.
In phase I decoding algorithm has been analyzed for the
existing approach, and in future the proposed work is carried
out in CRC, mod-2 arithmetic and Benes network.

The remainder of this paper is organized as follows. Section II
gives an overview of existing ML decoding solutions; Section
III presents the Existing ML difference-set cyclic codes

ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 93

algorithm; Section IV Proposed two dimensional Two
dimensional modulo sum algorithm Section V the results
obtained for the different versions in respect to effectiveness,
performance, and area and power consumption. Finally,
Section V discusses conclusions and gives an outlook onto
future work.

1.1 Motivation
There-fore, it is necessary to develop an improved decoding
algorithm without introducing the computation complexity
and increasing implementation cost compared to the
conventional algorithms.

1.2 Contribution
The review of existing decoding algorithms for DSCCs codes
and a proposed improved decoding algorithm, which can
achieve better decoding performance without requiring any
additional computation complexity or hardware overhead
compared to the conventional ones. Further the low
complexity switch network and a novel efficient control
signals generation for a reconfigurable DCSSc (combined
random LDPC and DSCCs) have been analyzed. The proposed
architecture can lead to significant reductions in hardware
complexity. However there is a between performance tradeoff
between area and complexity in the choice of soft-decision
and hard-decision algorithms. The hard-decision algorithms in
comparison to the soft-decision algorithms are considerably
less complex but their performance is not as good as soft-
decision algorithms. The proposed method reduces the low
complexity property of hard-decision algorithms and the good
performance properties of soft-decision algorithms are
preserved. Several error detecting algorithms are proposed and
experimental results are compared these inurn reduce the
complexity of hardware.

II. PROFILE ABOUT ML DECODING

Existing version of the ML decoder that improves the designs
presented before. Starting from the original design of the ML
decoder introduced in section 2. The Existing ML
detector/decoder (MLDD) has been implemented using the
difference-set cyclic codes (DSCCs) .This code is part of the
LDPC codes, and, based on their attributes, they have the
following properties:

 Ability to correct large number of errors.

 Modular encoder and decoder blocks that allow an
efficient Hardware implementation for systematic
code structure for clean partition of information and
code bits in the memory.

In this situation, the use of a simple error detector based on
parity check sums does not seem feasible, since it cannot
handle “false negatives” (wrong data that is not detected).
However, the alternative would be to derive all data to the
decoding process (i.e., to decode every single word that is read
in order to check its correctness), as explained in previous
sections, with a large performance overhead. Since
performance is important for most applications,

We have chosen an intermediate solution, which provides a
good reliability with a small delay penalty for scenarios where
up to five bit-flips may be expected. In general, the decoding
algorithm is still the same as the one in the plain ML decoder
version. The difference is that, instead of decoding all
codeword bits by processing the ML decoding during cycles,
the existing method stops intermediately in the third cycle, as
illustrated in Fig.1. If in the first three cycles of the decoding
process, the evaluation of the XOR matrix for all is “0,” the
codeword is determined to be error-free and forwarded
directly to the output. If the contain in any of the three cycles
at least a “1,” the proposed method would continue the whole
decoding process in order to eliminate the errors.[1]

Fig 1: Flow diagram of the MLDD algorithm.

IJAICT Volume -1, Issue-5, September 2014

ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 94

III. EXISTING ALGORITHM OF MLDD
The data N is divided into k segments each of m bits. The
segments (St) are added using ones complemented arithmetic
to get the sum and corresponding output is complemented to
get the Two dimensional modulo sum, and then segmented
Two dimensional modulo sum is sent along with data
segments. All the received segments (Sr) are added using ones
complemented arithmetic to get the sum. Then the sum (Ss)
has to be complemented, if the result is zero, the received data
is accepted; otherwise rejected. (As shown in Algorithm.1.)

[1]. Initialize H, G
[2]. Initialize P, I
[3]. If (H=PT |I) then
[4]. H<=valid
[5]. Else
[6]. H<=invalid
[7]. End if
[8]. If (G=I |P) then
[9]. G<=valid
[10]. Else
[11]. G<=invalid
[12]. End if
[13]. Initialize
[14]. c=m*g
[15]. If (code=valid)
[16]. Then c*Ht terms to zero else
[17]. C*Ht terms to be error
[18]. End if
[19]. Data segmentation
[20]. For: 1: N do
[21]. Segment the N
[22]. St (N) <=s1(m) mod 2 addition s2 (m)
[23]. Invert the Two dimensional modulo

 sum St(N)
[24]. Sr(N)<= s1(m) mod 2 addition s2 (m)

Algorithm 1. Code construction and two dimensional two dimensional
modulo sum equations.

The ML decoding algorithm is a hard-decision message-
passing algorithm for LDPC codes. A binary (hard) decision
about each received bit is made by the detector and this is
passed to the decoder. For the ML decoding algorithm the
messages passed along the Tanner graph edges are also binary:
a bit node sends a message declaring if it is a one or a zero,
and each check node sends a message to each connected bit
node, declaring what value the bit is based on the information
available to the check node.[3] The check node determines
that its Two dimensional modulo sum equation is satisfied if
the modulo-2 sum of the incoming bit values is zero. If the
majority of the messages received by a bit node are differ-ent

from its received value the bit node changes (flips) its current
value.

These algorithms are really important due to their simple
implementation. Their binary structure, binary memories and
limited wiring, makes them remarkable in hardware
implementation especially in the situations where only hard-
decision values are available at the receiver. Gallager's
algorithm A (GA) is, for instance, a hard-decision decoder in
the set of Majority Based algorithms with Alphabet A = (-1, 1)
In addition, the out-going message of a check node is the
product of its extrinsic incoming messages. The MBw
algorithms are studied in depth in, by the use of density
evolution another example of hard-decision algorithms is ML
decoding algorithm.

In this algorithm a flipping function is defined that counts the
number of unsatisfied syndrome bits (check nodes) in which
each variable node participates. Each variable node has a
binary buffer to store a hard decision value; the content of this
buffer will be flipped if the corresponding output of the
flipping function is more than a certain threshold.[2] Decoding
continues until all check node equations are satisfied or until
maximum number of iterations is reached. Maximum
Likelihood estimation (MLE) is an important tool in
determining the actual probabilities of the assumed model of
communication. In reality, a communication channel can be
quite complex and a model becomes necessary to simplify
calculations at decoder side.

The model should closely approximate the complex
communication channel. There exist a myriad of standard
statistical models that can be employed for this task; Gaussian,
Binomial, Exponential, Geometric, Poisson, etc., A standard
communication model is chosen based on empirical data. Each
model mentioned above has unique parameter that
characterizes them. Suppose a binomial model is chosen
(based on observation of data) for the error events over a
particular channel, it is essential to determine the probability
(p) of the binomial model.

If a Gaussian model (normal distribution) is chosen for a
particular channel then estimating (mean) and (variance)
are necessary so that they can be applied while computing the
conditional probability of p(y received | x sent) Similarly
estimating lambda is a necessity for a Poisson distribution
model. Maximum likelihood estimation is a method to
determine these unknown parameters associated with the
corresponding chosen models of the communication channel.
(As shown in Algorithm.2)

IJAICT Volume -1, Issue-5, September 2014

ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 95

[1]. For i=1 to m do
[2]. St=Sr
[3]. End for
[4]. Repeat
[5]. For i=1 to m do
[6]. If (St=Sr) then
[7]. All the values known
[8]. Finished else
[9]. (St≠Sr)
[10]. Er belongs to Ss
[11]. Flip Er corresponds to Ss
[12]. Finished
[13]. End if
[14]. End for

Algorithm 2. ML decoding

 P(y received| x send) = (1-p) n-d.pd

Where ,
d=the hamming distance between the received and the sent
codeword’s.
n= number of bit sent.
p= error probability of the BSC.
1-p = reliability of BSC.

IV. PROPOSED CYCLIC REDUNDANCY CHECK
A cyclic redundancy check is the error detecting method for
memory and digital networks and storage devices to detect
accidental changes to raw data. Blocks of data entering these
systems get a short check value attached, based on the
remainder of a polynomial division of their contents.

 Fig2 : Flowchart of the CRC design flow

On retrieval the calculation is repeated, and corrective action
can be taken against presumed data corruption if the check
values do not match. As shown in fig.2,The CRC is based on
polynomial arithmetic, in particular, on computing the
remainder of dividing one polynomial in GF (2) (Galois field
with two elements) To develop a hardware circuit for
computing the CRC checksum, we reduce the polynomial
division process to its essentials. The process employs a shift
register, which we denote by CRC. This is of length r (the
degree of G) bits, not as you might expect.

When the subtractions (exclusive or’s) are done, it is not
necessary to represent the high-order bit, because the high-
order bits of G and the quantity it is being subtracted. CRCs
are specifically designed to protect against common types of
errors on communication channels, where they can provide
quick and reasonable assurance of the integrity of content
delivered. However, they are not suitable for protecting
against intentional alteration of data.

Firstly, as there is no authentication an attacker can edit
content and recomputed the CRC without the substitution
being detected. When stored alongside the data, CRCs and
cryptographic hash functions by themselves do not protect
against intentional modification of data. Any application that
requires protection against such attacks must use
cryptographic authentication mechanisms, such as message
authentication codes or digital signatures (which are
commonly based on cryptographic hash functions).

To compute an n-bit binary CRC, line the bits are representing
the input in a row, and position the (n+1)-bit pattern
representing the CRC's divisor (called a "polynomial")
underneath the left-hand end of the row. Start with the
message to be encoded: This is first padded with zeroes
corresponding to the bit length n of the CRC. Here is the first
calculation for computing a 3-bit CRC. If the input bit above
the leftmost divisor bit is 0, do nothing. If the input bit above
the leftmost divisor bit is 1, the divisor is XORed into the
input (in other words, the input bit above each 1-bit in the
divisor is toggled).

The divisor is then shifted one bit to the right, and the process
is repeated until the divisor reaches the right-hand end of the
input row Since the leftmost divisor bit zeroed every input bit
it touched, when this process ends the only bits in the input
row that can be nonzero are the n bits at the right-hand end of
the row. These n bits are the remainder of the division step,
and will also be the value of the CRC function (unless the
chosen CRC specification calls for some post processing).

The validity of a received message can easily be verified by
performing the above calculation again, this time with the
check value added instead of zeroes. The remainder should
equal zero if there are no detectable errors. The selection of

Divisor Divisor

CRC CRC

Accept Reject

ZERO Data CRC

Data CRC Data CRC

IJAICT Volume -1, Issue-5, September 2014

ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 96

generator polynomial is the most important part of
implementing the CRC algorithm. The polynomial must be
chosen to maximize the error-detecting capabilities while
minimizing overall collision probabilities. The most important
attribute of the polynomial is its length (largest degree
(exponent) +1 of any one term in the polynomial), because of
its direct influence on the length of the computed check value.
(As shown in the Algorithm.3.)

The most commonly used polynomial lengths are:
 9 bits (CRC-8)
 17 bits (CRC-16)
 33 bits (CRC-32)
 65 bits (CRC-64)

Initialize CRC register -0-bits.

IN= m bit.

If (Higher order CRC = 1),

>> CRC =m together left 1 position,

XOR the result with Low-order r bits of G.

Else

>> CRC and m left 1 position.

Algorithm 3. CRC Flow

If there are more message bits, go back to get the next one. It
might seem that the subtraction should be done first, and then
the shift. It would be done that way if the CRC register held
the entire generator polynomial, which in bit form is a bit.
Instead, the CRC register holds only the low-order r bits of G,
so the shift is done first, to align things properly. By making
use CRC in memory error detection it in turn increases the
basic parameters but it helps to reduce the hardware
complexity through LFSR- linear feedback shift register.

V. RESULTS

 5.1 Memory
The memory read access delay of the plain MLD is directly
dependent on the code size, i.e., a code with length 72 needs
72 cycles, etc. Then, two extra cycles need to be added for
I/O. On the other hand, the memory read access delay of the
proposed MLDD is only dependent on the word error rate
(WER). If there are more errors, then more words need to be
fully decoded. In all the above methods they made use of two
dimensional parity equations it increase the memory through
extra overhead due to the addition of redundant bit (parity).[4]
It explores the idea of two dimensional Two dimensional
modulo sum which in turn reduce the memory consumption of

the device. Redundancy has been reduced through this
algorithm (As shown in Table.I)

TABLE 1. Memory Results of The Device

 5.2 Area
The previous subsection showed that the performance of the
Proposed design MLDD is much faster than the plain MLD
version, but slightly lower than the design with syndrome
calculator (SFD).As mentioned several times,[5] this is
compensated with a clear savings in area.

The conclusions on the area results are given as follows.

 The MLD design requires little area compared with
the other two designs. However, as shown before, the
performance results are not very good.

 The SFD version, which had the best performance,
needs more area than the MLD does, ranging from
25.40% to 294.94% depending on. Notice that the
increment of Area grows quicker than does.

 The MLDD version has a very similar performance
to SFD, However it requires a much lower area
overhead, ranging From 10.16% to 0.43%.

In all the methods they used two dimensional parity check
equations and increase the occupancy of gate it has to be
declined through two dimensional modulo sum algorithmic
flow in order to save the area. These conclusions can be
extrapolated to power. The over-head introduced by MLDD is
very small, contrary to the SFD case.

An important final comment is that the area overhead of the
MLDD actually decreases with respect to the plain MLD
version through two dimensional modulo sum algorithm. For
large values of, both areas are practically the same.[6]

The reason for this is that the error detector in the MLDD has
been designed to be independent of the size code the opposite
situation occurs, with the SFD technique, which uses
syndrome calculation to perform error detection: its
complexity grows quickly when the code size increases.

Logic
utilization

Proposed
method

checksum

Proposed
method CRC

Available
resource

Number of
slices 16 25 46560

I/O Buffers 71 64 4896

IJAICT Volume -1, Issue-5, September 2014

ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 97

TABLE 2. delay Results of The Device

 5.3 Timing Summary of existing algorithm

Minimum period: 2.309ns
(Maximum Frequency: 433.088MHz)
Minimum input arrival time before clock: No path found
Maximum output required time after clock: 5.693ns
Maximum combinational path delay: 10.381ns

As it is shown in the above results(Tabel 1,Table 2) due to the
addition of redundant bit it increase the area and memory It
has to be overcome by two dimensional Two dimensional
modulo sum.[7,8]

 5.4 Power
The power consumption of the existing method has in turn
enhance the on-chip power due to high increase in static
power, it has to be overcome by two dimensional modulo
sum.(As shown in Fig.3 and Fig.4).[9]

Fig 3: Two dimensional modulo sum.

Fig 4: CRC

VI. CONCLUSION

In this paper, an algorithmic scheme has derived from the
existing technique which effectively helps to correct errors
caused by Multiple Cell Upsets (MCUs) as well as SEU in
memories. Identification of the errors in an MCU has to
analyze by placing data in the memory, thus providing
additional error correction capabilities. Modified algorithmic
methodology helps to correct burst errors than the existing
method and helps to reduce the LUTs level. Additionally, It
helps to accelerate the decoding and effectively reduced the
area and memory occupied by the present MLDD, than the
previously proposed algorithms for DS codes. Thus the results
show that the method is also effective in reducing LUTs,
Power and delay when MCUs are present. The proposed
scheme has been validated by simulation using a large number
of error combinations and implemented to evaluate its cost in
terms of circuit area and speed.

ACKNOWLEDGMENT

The authors would like to thank PPG Institute of Technology
and Angel College of Engineering and Technology for their
Valuable support.

References

[1] I. S. Reed, “A class of multiple-error-correcting codes and the decoding
Scheme,” IRE Trans. Inf. Theory , vol. IT-4, pp. 38–49, 1954

[2] J. L. Massey, “Threshold Decoding. Cambridge”, MA: M IT Press,
1963.

[3] E. J. Weldon Jr., “Difference-set cyclic codes,” Bell System Tech. J.,
vol. 45, pp. 1045–1055, 1966

[4] C. W. Slay man, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Trans. Device Mater. Reliabil. , vol. 5, no. 3, pp. 397–404, Sep. 2005

[5] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for
NanoMemory applications,” IEEE Trans. Very Large Scale
Integr.(VLSI) Syst. , vol. 17, no. 4, pp. 473–486, Apr. 2009

[6] G.Torrens,B.Alorda,S.Barceló,J.L.Rosselló,S.A.Bota,andJSegura,“Desig
n hardening of nanometre SRAMs through transistor width modulation
and multi- combination,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.
57, no. 4, pp. 280–284, Apr. 2010

[7] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on neutron-induced soft error rate in SRAMs from a 250 nm to a

IJAICT Volume -1, Issue-5, September 2014

ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.01.18 Published Online 05 (05) 2014

 © 2014 IJAICT (www.ijaict.com)

Corresponding Author: Ms. E. Hemha Chandra, PPG Institute of Technology, Coimbatore, Tamilnadu , India. 98

22nm design rule,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp.
1527–1538, Jul. 2010.

[8] S. Liu, P. Rev iriego, and J. A. Maestro, “Efficient Majority logic fault
detection with difference-set codes for memory applications,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. , vol. 20, no. 1, pp. 148–
156, Jan. 2012.

[9] “Multiple Cell Upset Correction in Memories Using Difference Set
Codes” by Pedro Reverie, Member, IEE E, Mark F. Flanagan, Senior
Member, IEEE, Shih-Fu Liu, and Juan Antonio Maestro, Member,
IEEE, Jun 2012

IJAICT Volume -1, Issue-5, September 2014

